Differential network analysis via lasso penalized D-trace loss
نویسندگان
چکیده
منابع مشابه
Sparse Precision Matrix Estimation via Lasso Penalized D-Trace Loss
We introduce a constrained empirical loss minimization framework for estimating highdimensional sparse precision matrices and propose a new loss function, called the D-trace loss, for that purpose. A novel sparse precision matrix estimator is defined as the minimizer of the lasso penalized D-trace loss under a positive-definiteness constraint. Under a new irrepresentability condition, the lasso...
متن کاملGene set selection via LASSO penalized regression (SLPR)
Gene set testing is an important bioinformatics technique that addresses the challenges of power, interpretation and replication. To better support the analysis of large and highly overlapping gene set collections, researchers have recently developed a number of multiset methods that jointly evaluate all gene sets in a collection to identify a parsimonious group of functionally independent sets...
متن کاملGenome-wide association analysis by lasso penalized logistic regression
MOTIVATION In ordinary regression, imposition of a lasso penalty makes continuous model selection straightforward. Lasso penalized regression is particularly advantageous when the number of predictors far exceeds the number of observations. METHOD The present article evaluates the performance of lasso penalized logistic regression in case-control disease gene mapping with a large number of SN...
متن کاملAdaptive Group Sparse Multi-task Learning via Trace Lasso
In multi-task learning (MTL), tasks are learned jointly so that information among related tasks is shared and utilized to help improve generalization for each individual task. A major challenge in MTL is how to selectively choose what to share among tasks. Ideally, only related tasks should share information with each other. In this paper, we propose a new MTL method that can adaptively group c...
متن کاملCoordinate Descent Algorithms for Lasso Penalized Regression
Imposition of a lasso penalty shrinks parameter estimates toward zero and performs continuous model selection. Lasso penalized regression is capable of handling linear regression problems where the number of predictors far exceeds the number of cases. This paper tests two exceptionally fast algorithms for estimating regression coefficients with a lasso penalty. The previously known ℓ2 algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2017
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/asx049